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Abstract. The transmission of electromagnetic radiation at normal incidence through a finite
antiferromagnetic–nonmagnetic superlattice is considered for an applied field normal to the
interfaces (Faraday geometry) and for a field parallel to the interfaces (Voigt geometry). Besides
the transmission spectra, we present the calculations of the dispersion curves for a relevant infinite
superlattice to understand the features of the spectra. The transmission is weak or very weak at
frequencies in the stop bands of the corresponding infinite superlattice, and these stop bands only
appear at the Brillouin-zone edges(2n + 1)π/D, not at 2nπ/D.

1. Introduction

The long-wavelength dynamics of a magnetic material is governed by the frequency-dependent
magnetic susceptibility tensorχ(ω) which determines the magneto-optic properties. These
may be seen by a gyromagnetic Fabry–Pérot resonator. For ferromagnets the interesting
frequency range is microwave, but it is far infrared for antiferromagnets. If the magnetic
film is not too thin exchange effects can be omitted and a complete account is given by a
magnetic susceptibility tensor depending only on frequency. For this case, [1] has presented
a comparatively complete theory and numerical calculations for the transmission of normally
incident electromagnetic radiation through ferromagnetic and antiferromagnetic Fabry–Pérot
resonators in both the Faraday (applied magnetic field perpendicular to plate) and Voigt (field
parallel to plate) geometries. The results show that for unpolarized incident radiation, the
Fabry–Ṕerot resonator can act as a tunable circular polarizer. When the film is very thin or the
wave numberk ≈ 1/D is large, then exchange effects should be included. The susceptibility
tensor is a function of both frequency and wave number, that is, the system exhibits spatial
dispersion. With the exchange interaction included [2], computed transmission spectra show
that spin-wave fringes are unlikely to be observable for ferromagnets, but can be significant
for thin antiferromagnetic films.

Recently we extended this kind of calculation to a Fabry–Pérot resonator in which the
active material is a ferromagnetic–nonmagnetic superlattice [3, 4], where we present the
explicit formulae for the bulk dispersion relation, and the transmission and reflection in
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normal incidence in the Faraday geometry (static field and ordering direction normal to the
interface). The numerical calculations are given for the two optical eigenmodes which are
the states of circular polarization. Electromagnetic propagation in a infinite superlattice is
governed by the Bloch theorem so that stop bands appear at the Brillouin-zone edges. For a
corresponding finite superlattice, the Bloch theorem, strictly speaking, is unavailable, but when
the superlattice contains many unit cells, the transmission of electromagnetic radiation through
it appears weak or may be very weak at frequencies in the stop bands of the relevant infinite
superlattice. Consequently the transmission and reflection spectra become more complicated.
In addition, although we omitted the effects of partial mirrors the fringes are still sharpened
around resonance [3] as compared with [1], because the interfaces in the superlattice act as
mirrors.

This paper extends the calculations in [3] and [4] to a Fabry–Pérot in which the active
medium is an antiferromagnetic–nonmagnetic superlattice in the Faraday or Voigt geometry.
The antiferromagnetic layers have uniaxial anisotropy and the nonmagnetic layers are an
ordinary medium with magnetic permeabilityµn = 1.0 and dielectric constantεn. Here
we consider purely dipolarization effects and suppose that the power of the incident light is
such that no nonlinear effects occur. In the Faraday geometry, the anisotropy axis and static
magnetic field are taken perpendicular to the interfaces, and infrared electromagnetic radiation
is incident normally on the superlattice, but in the Voigt geometry the axis and field are taken
parallel to the interfaces and the incident radiation is still normal.

The finite superlattice, axes and notation to be applied are illustrated in figure 1 where
electromagnetic radiation is incident normally on the upper surface of the superlattice and
no matter which geometry we use, the anisotropy axis and static field are always parallel
to the direction of magnetic ordering. The field, anisotropy axis and direction of magnetic
ordering, however, are taken perpendicular to the interfaces in the Faraday geometry and
parallel to the interfaces in the Voigt geometry. The superlattice is made up of thicknessdm
of antiferromagnetic anddn of nonmagnetic layers and containsN unit cells (orN bilayers).
εm andµ are the dielectric constant and magnetic permeability tensor of the antiferromagnetic
layers andεn andµn(= 1.0) are the dielectric and permeability constants in the nonmagnetic
layers.D = dm + dn indicates the size of the unit cells andε1 andε2 refer to the upper and
lower media.

For normally incident electromagnetic radiation, the electromagnetic field is proportional
to exp(±ikmz − iωt) in the magnetic layers, exp(±iknz − iωt) in the nonmagnetic layers,
exp(±ik1z − iωt) in the medium above the superlattice and exp(+ik2z − iωt) in the medium
below it, where + and− refer to waves propagating in the + and−z directions. The wave
numbers are given by a general formula

k2 = ω2

c2
εµ (1)

where ε is a dielectric constant andµ a magnetic permeability.µ is a constant for a
nonmagnetic medium, but it is a function of frequencyω for the antiferromagnetic layers.
In the Faraday geometry there are two eigenmodes corresponding toµ+ = 1 + χ+ and
µ− = 1 +χ−, so that bothk andµ in (1) carry the subscript + or−. For the Voigt geometry
µ = [(2 +χ+ + χ−)2 − (χ+ − χ−)2]/[2(2 +χ+ + χ−)] which is the effective permeabilityµv.
χ± is [1]

χ± = −2ωmωA(1 +η2) + i(2ηωωm)

ω2 ± 2ωω0 + (ω2
0 − ω2

R)(1 +η2) + i2ηω(ωE + ωA)
(2)

whereη represents the Landau–Lifshitz damping andω0, ωA andωE are related to the static
magnetic, anisotropy and exchange field byω0 = γH0, ωA = γHA and ωE = γHE .
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Figure 1. Finite antiferromagnetic–nonmagnetic superlattice with axes and notation used in the
paper. Description in detail is presented in the text.

ωR =
√

2ωAωE + ω2
A is the antiferromagnetic resonance frequency andγ is the gyromagnetic

ratio. In contrast to [2], here the exchange term (Dk2) is omitted.
The calculations and discussion for the dispersion relation is presented in the second

section, where we give the dispersion relation of the relevant infinite superlattice (k as a function
of ω). In section 3, we first recall briefly the main theoretical results for the transmission and
then the numerical results and discussion are presented. Finally we put the conclusion in
section 4.

2. Dispersion relation

As the previous section describes, the optical properties of an infinite superlattice are governed
by the Bloch theorem, but for multilayers of finite thickness this theorem, strictly speaking, does
not apply. However, if the finite system contains many unit cells, phenomena similar to those
resulting from the theorem, may appear in different degrees and some of these phenomena
are seen from the transmission spectra of electromagnetic radiation. Thus we first discuss
the dispersion relation of an infinitely extended antiferromagnetic–nonmagnetic superlattice
together with numerical results.

According to the transformation matrix method [4, 6] (see the appendix) for
electromagnetic radiation propagating normal to the interfaces of the superlattice(

aUn+1

bUn+1

)
= ↔
T

(
aUn

bUn

)
(3)
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where aun and bun represent the amplitudes of waves at the upper surface of thenth

antiferromagnetic layer.
↔
T is the transformation matrix

↔
T =

(
A B

B∗ A∗

)
(4)

B∗ andA∗ are the complex conjugates ofB andA, which are determined as

A = δ
[

i(1 +12)

21
sinkndn + coskndn

]
(5)

and

B = δ−1

[
1(1−12)

21
sinkndn

]
(6)

by using the general electromagnetic boundary conditions between two different layers. In
(5) and (6)δ = exp(ikmdm) and1 = εnkm/εmkn, and the subscriptsm andn indicate the
antiferromagnetic and nonmagnetic layers respectively. The dispersion relation is given by

cos(QD) = Tr(
↔
T )/2= (A +A∗)/2 (7)

with Q the Bloch wave vector. Equations (5) to (7) are the main theoretical results in this
section. In order to see clearly the physics included in this equation, we now present numerical
calculations. The parameters are taken as follows:εm = 5.5, HA = 19.7 T,HE = 53.3 T,
Ms = 0.056 T andγ = 1.05 (cm−1 T−1) corresponding to FeF2; εn = 5.5,H0 = 3.15Ms

or H0 = 0.0. For an antiferromagnet, like FeF2 or MnF2, with a perfect crystal structure at
low temperature, the damping is very weak so that it is often omitted when one calculates
the dispersion relation, but for the calculations of transmission, reflection spectra or the ATR
spectra, one has to add the damping’s effects in the calculations [5]. Recently, there have
been some works [8, 9] dealing with the effects of the damping on the dispersion properties
of metal magnetic systems, where the damping is larger. In this section, we omit the damping
for calculations of the dispersion relation.

Figure 2 illustrate the dispersion properties of the infinite superlattice in a static magnetic
field normal to the interfaces (Faraday geometry) and figure 3 shows those of the superlattice
in a static magnetic field parallel to the interfaces (Voigt geometry). We should note that the
magnetic anisotropy axis is parallel to the field in each geometry, so the anisotropy axes in the
two geometries are different. WhenH0 = 0 the dispersion figures for the two states of circular
polarization in the Faraday geometry are the same (see figure 2(a)). The dispersion curve
shows a very narrow stop band at the resonance frequencyωR = 52.45 cm−1 together with
stop bands at the zone faces. The superlattice periodD is smaller by a factor of 10 in figure 2(b)
compared with figure 2(a) and the frequency scale is correspondingly expanded by a factor of
10. In contrast to the ferromagnetic/nonmagnetic superlattice [3], the stop bands only appear at
(2n + 1)π/D while there are no stop bands at 2nπ/D wheren = 0, 1, 2, 3, . . . . This property
is distinctive. In a non-zero fieldH0 in the Faraday geometry the usual Zeeman splitting [5]
appears between the two circular-polarization states but there are no other significant changes
so the dispersion curves are not shown.

In the Voigt geometry the propagating eigenmodes are the plane-polarization states, the
state withh field transverse toH0 being coupled to the magnetic resonances and the state
with h alongH0 uncoupled [1]. The dispersion curves shown are for the former. There is
a double resonance nearωR due to the Voigt permeabilityµV and otherwise stop bands are
seen at the zone edges. As in figures 2(a) and 2(b), non-zero stop bands occur only at odd-
integer multiples ofQD/π and as in those figures, the difference in frequency scale between
figures 3(a) and 3(b) is due to a factor of ten difference inD. For a finite magnetic superlattice,
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(a) (b)

Figure 2. Dispersion curves of the infinite superlattice in the Faraday geometry: (a)dm = dn
= 0.01 cm andH0 = 0.0, (b)dm = dn = 0.001 cm andH0 = 3.15Ms for the + state of circular
polarization.

(a) (b)

Figure 3. Dispersion curves of the infinite superlattice in the Voigt geometry: (a)dm = dn
= 0.01 cm andH0 = 3.15Ms , (b) dm = dn = 0.001 cm andH0 = 3.15Ms .

the Bloch theorem, strictly speaking, is unavailable, but the transmission of electromagnetic
radiation through the superlattice is weak, maybe very weak, at frequencies in the stop bands
of the relevant infinite superlattice. This point can be seen from the figures in the next section.

3. Transmission spectra

We assume that the finite superlattice containsN unit cells (thicknessND) with medium 1
above and medium 2 below. Incident and reflected electromagnetic radiation are in medium 1
and transmitted radiation in medium 2. According to the transformation matrix method (see the
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appendix for the main points), the relation between coefficients (au1, bu1) in the first magnetic
layer and (auN , buN ) in theN th magnetic layer is(

auN

buN

)
=
↔
T N−1

(
au1

bu1

)
=
(
D11 D12

D21 D22

)(
au1

bu1

)
(8)

with
↔
T given by (4),Dij being the elements of

↔
T N−1. When using the boundary conditions

to derive the expression of transmission coefficientt , we should note that the last layer is a
nonmagnetic layer. Thus we obtain the transmission amplitude

t = [4112(D12D21−D11D22)]/[δ(g −12h)[(D11−D12)−11(D11 +D12)]

+δ−1(g∗ +12h
∗)[(D21−D22)−11(D21 +D22)]]

−1 (9)

where11 = ε1km/εmk1,12 = ε2kn/εnk2,

g = coskndn + i1 sinkndn (10a)

and

h = 1 coskndn + i sinkndn. (10b)

As before,δ = exp(ikmdm) and1 = εnkm/εmkn.
In numerical calculations, we takeε1 = ε2 = 1.0 and the other parameters have been

given the last section. For calculations of the transmission coefficient, one should consider the
effects of dampingη in (2) and we let the damping factorη = 0.0001.

We find in the Faraday geometry that, except that the + and− states of electromagnetic
radiation have different resonant frequencies in a static magnetic field, their transmission
patterns are basically the same. Thus we only present the figures for the + state in figure 4
where the transmission is described byT = |t |2. For dm = dn = 0.01 cm andN = 10,
figure 4(a) shows a narrow transmission zero at the resonance frequency and also transmission
anomalies at the positions of the stop bands related to the Brillouin-zone edges(2n+1)π/D in
figure 2(a). No anomalies appear forQ near to 0 because the system with ten superlattice cells
is much more different from a infinite superlattice. Fordm = dn = 0.001 cm andN = 100,

(a) (b)

Figure 4. Calculated transmission curves for the Faraday geometry: (a) dm = dn = 0.01 cm,
H0 = 3.15Ms andN = 10 for the + state of circular polarization; (b) dm = dn = 0.001 cm,
H0 = 3.15Ms andN = 100 also for the + state.
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from figure 4(b) one can see the resonance zero and a well developed zero atf = 110 cm−1

corresponding to the stop band in figure 2(b). Fringes resulting from the overall thicknessND

are seen elsewhere.
The Voigt-geometry transmission graphs for the plane polarization that couples to the

magnetic properties are shown in figures 5(a) and 5(b), which correspond to the dispersion
curves of figures 3(a) and 3(b). The former shows narrow transmission zeros at about 50 and
56 cm−1 resulting from the two resonance frequencies and also low-transmission intervals
arising corresponding to the stop bands at 32, 54 and 74 cm−1 in figure 3(a). In figure 5(b) the
resonance zeros are still seen and, in addition, the quasi-stop band from 105 to 110 cm−1 is
very well developed because of the larger value ofN . The reason is that for a larger value of
N , the superlattice is more similar to the relevant infinite superlattice so that the transmission
is more difficult.

(a) (b)

Figure 5. Calculated transmission curves for the Voigt geometry: (a) dm = dn = 0.01 cm,
H0 = 3.15Ms andN = 10; (b) dm = dn = 0.001 cm,H0 = 3.15Ms andN = 100.

4. Conclusion

We have investigated the transmission spectra of the finite antiferromagnetic–nonmagnetic
superlattice in both the Faraday geometry and Voigt geometry and, in order to understand their
features, presented the numerical calculations of the dispersion relation for the relevant infinite
superlattice. The parameters selected for numerical calculations are those of FeF2/ZnF2

superlattices. Generally speaking, the range of interesting frequency for antiferromagnets
is the far infrared so that frequency scanning is practical for transmission spectra [5]. Our
system can be considered as a Fabry–Pérot etalon, without the mirrors, made of a finite
antiferromagnetic–nonmagnetic superlattice so that the properties described in the paper can
be studied experimentally, as in [7] where Sanderset almeasured transmission of FIR radiation
through discs of FeF2.

It is interesting that the stop bands only exist at the Brillouin-zone edges(2n+1)π/D, but do
not appear at 2nπ/D (wheren = 0, 1, 2, 3, . . .) for the infinite antiferromagnetic–nonmagnetic
superlattice. For a fixed thickness of the finite superlattice, the more unit cells are contained
in the superlattice, the weaker the transmission, at frequencies in the stop bands of the infinite
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superlattice, is. In addition, the stop bands are wider and clear in the Voigt geometry than in
the Faraday geometry.

Strictly speaking, the Bloch theorem is unavailable for a finite superlattice, but the
transmission of electromagnetic radiation through the finite superlattice must be difficult at
frequencies in the stop bands of the relevant infinite superlattice. For a superlattice with a very
large value ofN , the quasi-stop bands can be seen clearly from the transmission spectra or
reflection spectra.
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Appendix

In this appendix, we present the main points of the transfer matrix method in the text. According
to figure 1, we write the electromagnetich fields in terms of the incident amplitudeh0 as

h = h0 exp(ik1z) + rh0 exp(−ik1z) upper medium (A1)

h = aun+1h0 exp[ikm(z− nD)] + bun+1h0 exp[−ikm(z− nD)]
= abn+1h0 exp[ikm(z− nD − dm)] + bbn+1h0 exp[−ikm(z− nD − dm)]

antiferromagnetic layern + 1 (A2)

h = cun+1h0 exp[ikn(z− nD − dm)] + dun+1h0 exp[−ikn(z− nD − dm)]
= cbn+1h0 exp{ikn[z− (n + 1)D]} + dbn+1h0 exp{−ikn[z− (n + 1)D]}

nonmagnetic layern + 1 (A3)

h = th0 exp[ik2(z− nD)] lower medium. (A4)

It simplifies the formalism to use amplitudes (au,bn , bu,bn ) and (cu,bn , du,bn ) containing a phase
factor relating to a localz origin at the top (u) and bottom (b) of the layer; equivalent amplitudes
are related by simple phase matrices:(

abn

bbn

)
=
(
δ 0

0 δ−1

)(
aun

bun

)
(A5)

and (
cbn

dbn

)
=
(
δn 0

0 δ−1
n

)(
cun

dun

)
(A6)

whereδn = exp(ikndn) andδ is given in the text. The complex amplitudes in the different
layers are related by the electromagnetic boundary conditions at the interfaces. Within the
superlattice these give

abn + bbn = cun + dun (A7)

1(abn − bbn) = cun − dun (A8)

aun+1 + bun+1 = cbn + dbn (A9)

1(aun+1− bun+1) = cbn − dbn (A10)
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with1 defined in the text. Combining (A5) to (A10) we find the transfer matrix for propagation
across a unit cell of the superlattice, or

↔
T =

(
A B

B∗ A∗

)
(A11)

and (
aun+1

bun+1

)
=
↔
T

(
aun

bun

)
(A12)

withA andB given by (5) and (6) in the text. The dispersion relation of the infinite superlattice,
then, is

cos(QD) = 1
2Tr(

↔
T ) (A13)

whereQ is the Bloch wave vector. For transmission across the whole superlattice we have(
aun

bun

)
=
↔
T N−1

(
au1

bu1

)
=
(
D11 D12

D21 D22

)(
au1

bu1

)
. (A14)

These are the main idea and formulae of the transfer matrix method. Using these formulae,
we can obtain the main theoretical results in the text.
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